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I. INTRODUCTION

Many aspects of terminal ballistics testing are in apparent need of
procedural standardization. We attempt here to deal in part with one
such area: representation of the relationship between striking and
residual velocities implicit in sets of (v s, v r) data.

A form is proposed as being sufficiently simple and versatile to
usefully and realistically model velocity interdependence. A regression
technique (a direct non-linear least squares algorithm) is presented
which, through empirical parameter determination, establishes a systematic
method for obtaining an explicit functional relationship; in particular,
a "limit velocity" is thereby routinely generated from input data. It
is suggested that what is here described might substantially contribute
towards a standardized methodology for assessment and categorization of
velocity data and towards standardization of strategy in testing.

In short, if the overall procedure is accepted, then a formula is at
hand to concisely contain experimental velocity information. Indeed
much of the information from a data set is condensed into a triple (a,
vZ, p) of numbers which uniquely specifies the relationship. Ideally,
and in the nature of future intent, these numbers should be qualified
according to data variance and endowed with a statistical appraisal of
confidence.

The practicable essence of this report is cast in a comprehensive
list of Fortran directives which methodically induces machines to extract
parameters from data and to plot corresponding (vs, v r) curves.

II. A PROPOSED FORM

1. Context and Form Considerations

A frequent test, of multiple special interest, in terminal ballistics
consists of the firing of a number of nominally identical projectiles
(penetrators) into as many nominally identical targets with all controlled
phenomena except for striking velocity *, vs. being nominally invariant.
The measured response to each such impact which is of present concern is
projectile residual velocity, v.r A collection of data points (vs, vr)
is thereby obtained. In accord with common usage, each shot is deemed
to result in "penetration," whiie "perforation" is signalled by the
criterion vr > 0.

For present purposes we regard striking velocity as a controlled variable.
Also, in deference to prevailing custom, velocrit-es are taken to be
non-negative numbers rather than vectors.

Preceding page blank 9
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Let us suppose a given projectile-target situation, by which it is
assumed that a given projectile impacts a given target with variable
striking velocity v but with all other relevant pre-impact characteris-
tics being given ans constant. From this point and this premise the
discussion admits of mathematical idealization. In the given context
residual velocity can be considered a function of striking velocity;
Vr = f (v,) for v. > 0. We as:ume the existence of a limit velocity, v,,
characterized (i.e.. defined) by the properties: vr = 0 for 0 v s
and v > 0 for v " v,; equivalently, v, = max 1v :v r= 0 = inf {v :vrrs 'r sr

As further characteristics of a suitable (and workable) model, we
desire continuity and that, for v. > v•, the function be strictly in-
creasing, smooth (differentiable) and concave** (every chord lies beneath
its intercepted arc). The latter propert.es are secured by requiring
that the function possess at each puint oIL its support ({x : f(x) t 0))
a positive first and a negative second derivative. Such stipulation is
of course largely contrivance and is not experimentally decidable but
is convenient, suggestive of physical experience, and imposing of no
apparent conflict with experiment or theory.

2. Further Form Consideraticns: Simple Penetration Theory and the
Hyperbola

Traditional penetration theory, especially where an explicit model
is developed, has been most extensive (and evasive of much unpleasantness)
in dealing with the case of a rigid (mass-preserving), essentially non-
deforming penetrator; e.g., a steel projectile impacting a thin aluminum
plate. Such treatments, otherwise tolerating a diversity of assumptions
about the physics of the particular penetration process conjectured,
have beer, numerous.

Ic is a pertinent observation, and is perhaps not generally recognized,
that the penetration models evolved from these theories have almost
invariably adhered to one basic form; specifically:

v = /2(1)
v 1/2= 1' '<vs<(v s 2 _ v12 Vs . V

.ere and elsewhere we cp;ecif-calZy -x',ud• the pos.ibilitv+ of "ude.ing
a "shatter regime," i.e., wc are insisting that if fQxl) > 0 and
x4> xl, then f(x 2 ) > 0. This is not considered a serious compromise
with the generality for which we strive.

The inf(imum) of a set is its greatect lower bound.

T7hio preriludeo thug poarihiiiqt of inflection points.

i0
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For instance, the Poncelet-Morin hypothesis* of 1829 cotacerning the
resistance offered a projectile in motion through a dense medium leads,
with supplementary assumptions, rather easily to this form (c.f. Robertson
[1943]); so also does the quite different simple energy-nomentus analysis
of Recht and Ipson [1963]. A variety of other approaches falls into line
(Nishiwaki, Thomson, Zaid and Paul, etc.). The various models ultimately
differ precisely in so far as do the formulations for a and vy; which
quantities we will tend to view as parameters to be subjected to optimal
adjustment in a given situation.

Our examination of available data tends to confirm that experimental
results can often be well represented within the framework of form (1), .
particularly in situations where there is not (or is not expected to be)
excessive projectile deformation. Theory and experience persuade us
that in many instances (1) does offer a viable model. We will feel
obliged presently to adopt many characteristics of this form, and the
form itself as a special case, in a proposed more versatile basic form.

We note that form (1) meets the requisites of the previous section.
Additionally, there is an infinite right derivate at vt; i.e., while

rv d v
d vr does not exist at vV, it is true that -. Also avs rd s t d v s

approximates vr for large values of vs; precisely, vlim. (a v5 - V = 0.
s

Observe that for vs r v, (1) is a quadrant of a hyperbola with

center at the origin, major axis coincident with the horizontal axis,
having as one asymptote the line through the origin of slope a.

The assumption of projectile rigidity typically associated with this
form facilitates dealing in terms of kinetic energy; within the perfora-
tion regime, (1) implies linearity between striking and residual energies:

er = a (e - e,', where symbol meanings re presumably evident. It may

at this point be worth noting that even in cases where significant de-
formation and mass loss are experienced, we have observed tenative I
experimental indication (from situations where residual mass measurements
axe available) of approximate linear correlation between striking and
residual energies.

A 'odificatio•. of earlier "aectionaZ-preseure" theories asserting that
the force resisting penetration at a gven target depth is jointZy
propositionai to a depth-dependent cross-sectional projectile area and
to a linear function of instantaneous projectile energy.

[ 11



Since vr cannot exceed v , an imposed parameter constraint will be
o < a 4 1. In the event of perforation by a rigid projectile, an impli-
cation of the special case a % 1 is that energy lost to the penetration
process is independent of striking velocity. The various proposed models
of type (1) generally concur that a should be near one for thin targets
and, other things being equal, should decrease with increasing target
thickness. For example, from the formulation of RechtIand Ipson for an
assumed plugging mode of failure, we have a = (I * r)- where r is the
ratio of the mass of the ejected plug (small for thin plates) to that of
the grojectile.

Otherwise extant simple penetration models are prone towards abject
empiricism - randomly selected theories alleged to fit experimental data,
limited of scope, curiously behaved, and in any event not sufficiently
adaptable for our purposes to be usefully exploited*.

3. Present Proposal: The Basic Form

There is clear experimental indication that in general a somewhat
more flexible model is required to reprusent the velocit)y relationship
being considered. In particular it his been fouid that form (1) is
often not capable of adequately reflecting observed behavior for vs above
and in the vicinity of the derived v,; such deficiency can be rather
dramatically apparent for instance in multiple plate situations and in the
case of long rods perforating comparatively thick armor. Nor is this
especially surprising for it is just in this region that one wight
suppose deformation to be most consequential; it is expected, c.f.
Defourneaux [1973], that the proportional contribution of plastic defor--
mation (and of friction) to total energy expenditure diminishes towards
zero as v becomes large. In addition to the vagaries intr,-duced by the
possibility of projectile deformation, the general inadequac.,- of (1)
might be reflected as well in variability of target deformation. More
significant than the absolute susceptibility to deformation of either
projectile or target, we expect, may be the manner in which the defor-
mation patterns are distributed with striking velocity.

A basii. form assimilating desired general characteristics* and
considered, from a wide spectrum of experimental evidence, well suited
to effectively represent observed behavior is:

Sx fPreiuent-Ly enouznter-ed Phenroma cif' tUw modela which we find

restrictive or at variance with our physical expectatzona are unaccount-
able discontinuities and inflection points, either lack of an oxynptote
or insistence that the asymptote have aZwaya a slope of one (or some
other inmntable value chosen by carice) and absence of an infinite
right slope (derivative) at v.

A partial exception will be noted in the next section.

12



Vl ,(2)
Vr s vs0v 2 (

a v p- > V£

with constraints 0 < a 4 1 and p > I*.

It is regarded that (2) offers additional and sufficient versatility
precisely in the region where (1), which is a special case of (2), was
found to be deficient. The parameter a assumes its previous role and is
most visible as the slope of the asymptote; analogous asymptotic behavior
is insured by the requirement p > 1. The parameter p, sensitive primarily
it is felt to deformation, we view as a shape factor controlling how
sharply the function rises towards tzs asymptote". The injection of
the variable p in place of 2 is inescapably empirical but procures an
especially natural and appropriately conservative generalization. Both
a and p are clearly devoid of physical dimension. It is possible,
though not at issue here, that for a large class of situations the three
parameters can be sufficiently well prescribed in terms of relevant
phy3ical dimensions so as to determine an explicit functional model of
predictive scope (one would for instance selectively borrow from rigid
penetrator theory for a and v formulatiun) apd this theme may be pursued
latcr.

It is rather our present purpose to advocate that form (2) serve as
a standard framework within which to cast experimental results; we
further propose that explicit relati.onships be obtained from given sets
of (vs, vr) data by the systematic determination of triples(a, vg, p) of
parameters fronm the regression procedure which is to follow (or, more
literally, from the associated computer program).

The parameter v., marking the boundary of perforation, is often of
special import. Standardized adoption of the outlined scheme would in-

clude acceptance of a v• so generated as being definitively the limit
velocity (for the given projectile-target situation) implicit in the given
data set.

1. There ir. rese.7blance in formi to what have been called "power means,

expressions of the for MP - (p ) 2M - 3 for excarple is the

Lorentz mean in the thcory of equation of sta•k for gases.

2. It is both inte.sting and irrelevant to recall Fermat's notorious
"last theorem" (1Wth Century), asserting that for a = 1, v, > v, > 0
and p > 2, there are no integral vaiua for the symbols vs; vt rind p
which satisfy (2).

S4white it is of couroe true that avs - vr ÷ 0 as vs ÷ for fixed p > 1
(i.e., there is an asymptote of slope a emnating from the origin), it
is also true that avs -v 0asp for fixed vv s v.

,¼• 13
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4. Comments, Perspectives, and Implications

(i) Initial expectation was that a non-deforming projectile repre-
sented an ideal, that (mindful of traditional theory) such perfection
could be best accommodated for p - 2, and that aberrations should if
anything require higher values of p (roughly, that increase in deforma-
tion should correspond to increased rate of ascent of the(vY5 , v ) curve -

that the "ideal" should correspond to a limiting value of the parameter
p). Two seemed a likely minimum. Whatever the merits of the reasoning,
the expectation has, in our experience, been borne out for situations
involving long rod penetrators, but not in general; fragments provide a
frequent exception.

(ii) As there is occasional concern in the literature and elsewhere
with change or loss of projectile velocity effected by penetration, it
might be of some value to consider form (2) from this perspective.
Letting A = vs - v we rewrite (2) as:

Ss2r

A VS, 0 < v s p4-V 1/p, 3

vK - a  ( vvs -v9 P V s > vk

It is clear that the corresponding curve is asymptotic to the line
from the origin of slope 1 - a; A is thus obliged to ultimately, with
increasing striking velocity, either decrease towards zero or increase
without bound depending on whether a is one or less.

For v. > v and a < 1 it is routinely verified that A achieves a
minimum value 2 and the corresponding point on the (vs, vr) curve has

SŽ--1/p

slope 1) at the point v. = y, (1 - a - ) . Experimental affirmation
that velocity loss can, as implied, decrease to a relative minimum and
then increase is noted e.g., by Goldsmith and Finnegan [1973].

(iii) Another perspective can be attained by considering transfor-
mations which map the region under the (vs, vNY curve into finite area.
We speculate that such device may be of ufe in providing additional
measure of parameter effect. As an example we offer one such transfor-
mation which maps functions of type (2) onto the unit interval and yields
area as a function of p while normalizing the effect of a and v ..

V_ V^

Let w = t and z =--t For v > v2 we rewrite (2) as:av v 5
S S

1/pW = 1-z) . (4)

14
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The associated curve is concave, symmetric about the line w a z and
contained by the triangle with vertices (0, 1), (1, 0) and (1, 1); for
p 2 the curve is a quadrant of the unit circie. Area under the curve,

f (1 - zp) /dz, is an increasing function of p with limiting values

0
of 1/2 and 1 for 1 < p < -.

An analogous measure, and one more computationally immediate, is
provided by the L. norm. Letting g (z) = w we observe that g is an
element of the (cyassical Banach) space L (0, 1)*. The appropriate
norm is given by

P) 1/, i/p 1/pIgil = (fl IgI) (fl1 - zP) dz) = (p+-

p 0 0

Igip is similarly an increasing function of p, and 1/2 < Igi < 1 for
<p p

1<p<•.

(iv) This section is concluded by noting an appealing property of
form (1) which is not preserved in the generalization to form (2).

The composition of two functions of form (1) is itself of this form**
(composition is a binary operation on the class of functions of this
form). If (I) is regarded as the operable medium and a situation involves
a target comprised of several parallel plates, then (1) can be used
consistently for both the whole target situation and that of each
"subtarget." In particular the specifying parameters for the target can
be calculated from those for the constituent plates.

Unhappily, such is not the case within the context of form (2)
unless p is set at some fixed value. To be quite specific: suppose we
are dealing with a target ensemble of two plates perforated by a

*I
i.e., g is Lebesgue measurable on (0, 1) and figir < g . It is of

0
cource equally true that g E L (0, 1) for all 1 < q < but in theq
c4..! of p the observation is especially natural.

Basically, because the class of appropriatel oriented hyperbolas is

closed under composition. if f(x) = a x 2 - v2 and f. (x) = b x2- w2

then f 1 (f 2 (x))= ab x- (v 2 + =): the composition f 1 f2 is a hyper-
a

bola of the same type as f, and fr" (To go further, the class of quch
hyperbolas is an abeZioan gi-oup unar the composition operation).

, 1S



projectile having initial, between-plate and final velocities denoted
by x, y and z respectively. Then we wjould like to say that

y M a (X - vP)I/p and z = b (yq _ wq)I/q for some a, b, v, w, p and q.
But the implied overall striking-residual connection is then

z = ab [(xp _ vP)q/p - (w/a)q]l/q which does not conform to (2). This
lack of closure under composition, while not stri ly an impairment to
the present concern of supplying effective representations of velocity
relationships, does preclude full matheinaiical consistency in the
consideration of multiple plate targets.

III. THE PARAMETERS

1. A Regrejsion Procedure for Parameter Estimation

We now suggest a mechanism for the determination of explicit form
(2) repres-.ntations from given data sets. It is convenient for the
moment to replace Vs, vr and vi in (2) with x, y and c respectively.

Following is a least squares algorithm for fitting the form

a (xP - cp) x > C

with constraints 0O< a 1 and p > 1 to a data set {(x 1 , Y1)' --- , (xn, yd)}

of pairs of non-negative integers, each x. and at least one yi being

positive. It is assumed that n > 2, x1 < xn, and x1 < x 2 4-- n

Parameters subjected to estimation are a, p and c (or otherwise as
indicated).

For the mechanics of the algorithm we will also suppose that p < 8;
this is a harmless restriction as there is but minimal variation in the
form for p > 8 (a and c fixed)**, and it is necessary to specify some
upper bound for p. Further, reflecting upon the input data and the
interval spacing selected for search routines, c will be required to be
an integer and p will be confined to the set {1.1, 1.2, -.- , 8}. These

*That is, we need at least two data pairs and at least two distinct x
vaZues- additionaZly, the data pairs are assuoed to be o•z.e.ed accord-
ing to increasing values of x -this latter requirement will in practice
be obviated by the inclusion of a preliminary sorting routine in the
conputer program.

"A measure of this variation is conveniently afforded by the L norm

specified in I1 4 (iii). We note that 4g, = 1.

16
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strictures have been found reasonable for the particular application in
mind but are of course easily alterable.

Immediate interest is in what will be called the standard program,
SP, in which the complete parameter set (a, c, p) is estimated. There
is related concern with the follow:rng special options which it is con-
venient to simultaneously establish;

01: p is prescribed, only a and c are determined,

02: a is prescribed, only c and p are determined,
2

0 3 : a and p are prescribed, only c is determined.

In the usual spirit of the least squares approach, we seek in each
case appropriately constrained parameters which approximately minimize
the function

,C ) Yi2- +x P - YiJ2"
1 1

Root mean square error (or standard error) is expressed by 1 i(a,c,p).

With no possible loss in precision (as measured by the value of *),
we require that 0 < c 4 xn and, for SP and 01, that a I if c . xn.

01 and 03

1, /p p 2/p :

Let g(c) = Z Yi(Xi - cp] I and h(c) = Z (x.i - cp) , c=0,,.... n-
x.•c 11x.•c 1n

1 1

Then g ; 0 and h > 0 for 0 < c < Xn; g(xn) = h(xn) = 0; and

n 2
b(a,c,p) y - a (2g - ah).il

In the case of 01. if 0 < c < x, n is a quadratic in a having an

22*
absolute minimum at a = g/h > 0 O, __ > 0 For fixed c,

S~da

is thus minimized (exactly) for 0 4 a < 1 by taking a min (g/h, 1).

17
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Accordingly, the optimal value for a corresponding to a given value c
is

ac) g(c)/h(c), g(c) ' h(c)

S!I, g(c) >, h(c).

For 01 and 03 respectively, define:

I 2 (c)/h(c), g(c) < h(c)
(i) 0(c) , a(c) [2g(c) - &(c)h(c)] 2g~c) - h~c), g~c) ' h~c)

and

(ii) O(c) = a [2g(c) - ah(c)].

n 2
In both cases the expression X y - *(c) needs to be minimized;

i=1 1
this is accomplished by finding a value c which (approximately) maximizes
the function O(c).

We first generate an initial estimate co.

Let ax min {i = 1, 2, --- , n : Yi > 0}, xo = Yo = 0, and

8= max {i = 0, 1, , n: Yi - 0}.

c0 then derives from a linear least squares fit of yP = aP(xp - cp) on

f(x 1 i P, YiP): i >c a) with constraints c 0 0, and c.0 > x8 if a >

The explicit procedure for generating co is as follows:

Let r n - a + 1,

n pn n *n PbI Z x b2, =Z xiP, b3=Z YiP, b4  Z (xi Yi),i=% i--0 i=a i=a

In the language of our physical model, we are constraining the initial
44, 9oc1y , . -estnbia- to be at Zeaut au large as ene Largest striking

vcZocity for which there is no perforation unless perforation does occur
at some smaller striking velocity.

Note that the linear regression does not use data points to the left of
the first point for which there is perforation.

18



0, rb 1 b 22

urn and, to the nearest integer,rb 4 -b b3

l/2 b32
2 ,rb 1 *b

rb1  b2

t ff •- , u > 0 and b2 u > b .

0, otherwise

Then let c a (t, , U> 1

Normally c should be a very good estimate for the parameter c and,
as a simplified method suitable for desk calculators, it might be
acceptable to stop at this point; it should then however be realized that
c has not been derived from a direct non-linear least squares fit of the
form to the data but results rather from a linear fit to a transformation
of a subset of the data.

The last step is to search for a better estimate.

Routine 1: Starting from c = co, successively evaluate *(c), letting
c vary by steps of one unit in the direction of increasing 0 (if there
should be a local minimum at co, proceed to co+l); let ý be the first
value for c such that O(c) is at least as large as both p(c-l) and O(c+l),

or such that c = 0. Formally: let c co + Jo, where

S0j = 0 if O(co) •(c 0C+l) and either co = 0 or O(c 0 ) > ) (Co-l),

j J = mrin [j 1 :(co+j+l) 1 O(c +j)) if O(Co) < O(Co+J),

Jo = -min {j >•I : (c -j-l) < O(C -j) or j =c if
00 0 0

O(c +1) < (co) < O(C -1).

While there is no assurance that c provides the largest possible
value for O(c), it does better than the initial estimate, co, which is
itself expected to be good and further searching is considered
unwarranted.

For 01 the perameter estim.tes are a = a (c) and c c.

For 03 the estimateJ parameter is c f c.

19



SP and 0,

We rely upon much of the preceding technique while allowing p to
vary.

For a fixed value of p. let g(c), h(c) and a(c) be as before and let
0(c) be defined as in (i) and in (ii) for the cases SP and 02 respec-
tively.

For p = 2, determine c0 as described previously; then use Routine 1

to find the corresponding ý, which we now denote as Z(2).

For p = 2.1, 2.'., ... ,8 respectively, let ý(p) be obtained from its
predecessor by using Routine 1 with co replaced by c(p - .1). Similarly,
for p - 1.9, 1.8, -1.1, let E(p) be successively generated by using
Routine I with co replaced by c(p + .1).

Let i(p) = 0(ý(p)), p = 1.1 1.2, --. ,8,

Approximate maximization of $(p) is desired and we follow a search
routine, starting from p = 2.* Explicitly: let ý = 2 + k/lo where
k = min {j = 0,1,.-.,60 $(2+j"lO) > $(2.1+j/1O) or j 60) if
$(2) Q $(2.1);

k = - min {j = 0,1,...,9:$(2-j/l0) > $(1.9-j/l0) or j = 91

if $(2) >$(7)

For SP the parameter estimates are a =(c(p)), c = •(•) and p = f.

For 0 the estimates are c = •C•) and p = p.
2

2. A Remark

Reliance upon a direct non-linear regression technique necessitates
high-speed computing ability. The form does not seem to lend itself to
linearization in any acceptable manner but we do at least expect to

Starting from p = 2 is primarily a matter of computationaZ expedience;
we expect that in many instances the optimal value of p will be near two.

The search works way from two in tOw direction of increasing 4 and s tops
when a local nviinon is detected. There is no general guarantee of hav-
ing hit upon the absolute maximwn; however we have tried more extensive
routines on a large and diverse class of data sets and have by comparison
fotnd the simple (and efficient) routine given here to be consistently
satisfactory (typically the function j, for the given data, had but one
maximwn.) We are confident at.t this routine does, for the intended
application, provide a good estimate.
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benefit in terms of accuracy from a direct approach. Prevailing against
linearization are the nonlinearity of the form in the parameter p and
the special role of the para'ieter v• (or c).

If one were content to take form (1) (or (2) with p prescribed),
restrict this form to its support, delete certain data points and trans-
form the remainder, then linearization is feasible. A problem here,
besides loss of generality and incomplete utilization of information,
is that a sound decision on point deletion can be critical and is not
always apparent. An obvious but not consistently judicious choice is
to delete all points for which there is no perforation; i.e., the linear

former 2 = a 2 (v, 2 - v 2 ) is adapted to those points (vs 2 , Vr 2 ) for which
Vr is positive. Such 'procedure is recurrent in the literature and goes
back at least to Robertson [1943]. A rather more sophisticated approach
along these lines was used for generating initial estimates in the
preceding algorithm.

For the price of nonlinearity and a higher level of machine depen-
dence we find it far preferable to systematically fit a complete and
more general form to a complete data set.

3. Some Statistical Contingencies

The effort here is to suggest some plausible areas for statistical
exploration. The questions raised will likely require better formula-

7- tion from keener perspectives at another time and we will not at this
point be particularly inhibited by lack of precision.

Till now we have adopted a deterministic view of velocity dependence.
We have assumed the pretense of being able to deal with a specific
residual velocity consequent to a given striking velocity; more real-
istically we should perhaps enquire of the probability that for a given
striking velocity the residual velocity (regarded as a random variable)
will belong to a specified interval. It is transparent that for each
vs. Prob [0 < vr < Vs] = 1;* significant statements of this nature would
however be welcome.

To what extent can meaningful assessments of confidence be attributed
to estimated parameters? Size of the data set is clearly important.
Also significant surely, and in different ways for the different parame-
ters, is the distribution of striking velocities; a concentration of
plints about the estimate vt is bound to enhance confidence in that
esti ate but reflects little on the parameter a which is mostly influ-
ericed by points with high striking velocity. Estimation and exploitation I
of relevant variance measures is probably essential.

Unless fortuity in measurement is considered to admit of the possibility
that v > v5 .r s*
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SI I I II I IIIi



The parameter vX is often of primary interest. One would ideally
hope that some reasonable assumption about probability distribution,
interacting with statistical invention, could be brought to assert that
for a reasonable data seZ the quantities Prob [vr = 0 I v. < vz - e] and
Prob [v > 0 vs > Vt + L]* are reasonably large (proximate to one) for
reasonably small positive values of c. It would be additionally provi-
dent were the above probabilities to equal one-half for e a 0, in whinh
case vk would be equivalent to what has elsewhere been termed "v5 0s, the
concept of which, along with other pzobabilistic phenomena, has provoked
the perpetration of much nonsense in ballistic literature.

Of allied interest would be a measure of relative confidence in
different vz's extracted from different data sets. Consider the follow-
ing situation. A collection of v 's is at hand and one is equipped with
a general form purportedly able, over some broad range of situations
including those which yielded the vZ's, to represent limit velocity
in terms of the physical set-ua (materials, geometry, etc.); e.g.,
variants of the de Marre form have been fashionable in this regard for
nearly a century. One then regresses to the collected vZ's to evaluate
parameters - but ideally the various vi's should be variously weighted
in the relevant regression function so as to reflect their various
relative degrees of reliability.

Another problem involves the design of methodology for data acquisi-
tion relative to a given projectile-target situation. With rcference
to a priori value judgments about information desired, and constrained
by economic and physical limits, a suitable and efficient experimental
strategy needs to be ordained. A new dimension of complexity is injected
at this stage by the introduction of another random variable; striking
velocities can, we suppose, be regarded as deterministically ,rýasured,
but they certainly cannot be so controlled.

Prob [A[B] is the (conditional) probability measure of A given B.

The most prevalent de Marre-type form and one in carrent local usage,
a dimensionally purified revision of the original, can be written as

S= (t/d)��~kd /m where d and m are Frojectile diameter and mass, and

t is target thickness (or thickness times a function, such as secant,
of incidence angle). k, with units of force per area (e.g. a multiple
of y-eld strees), and y are the parv-u to be estimated. A
(linearized) regression procedr'e in this case is apparent, The form
is (perhaps obviously) empirical but not without an element of physical
appeal, especially in the rigid-projectile context for which it was
originally intended; indeed some quite serious theoretical analyses,
invoking principles of elasticity and hydrodynwnics, have produced
models of this type with values for "y of 1/2 and 1 (our data-dependent
least squares determinations for y have typically been near .8).
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V F
If limit velocity is the sole objective, the atteqpt should be

towards obtaining perforations and non-perforations within a small range
of striking velocities.* Should the intent be for uniformity of confi-
dence in the full relationship, or if there is a weighted concern with
perhaps disproportionate interest in limit velocity, then an imposing
variety of concepts needs to be formalized and an appropriate experiment
designed. At issue, briefly, is the prescription of standard procedures
for generating sets of (vs, v) data from which limit velocities and

overall velocity correlation can, with measurable reliability, be
systematically and definitively determined.

IV. THE COMPUTER PROGRAM

1. Introduction and Examples of Output

The algorithm of Soction II. 1. is encoded in a Fortran Program
to generate parameter estimates from a given data set. Plot routines
provide separate graphic displays of each of the consequent form (2),
(3) and (4) representations; the form (2) representation (the (vs, v r)

curve) being no doubt of predominate interest. In each case the given
data set or the appropriate transformation thereof is also graphed; for
(2) and (3) relevant asymptotes are plotted as dotted lines. In
deference to machine notational limitations, the symbols vs5 , vt., " , a

and p are replaced by X, Y, C, A and P respectively in plots and print-
out. S will designate the root mean square error (c.f. page 17)
associated with the fit of the determined (v s, v ) curve to the given
(Vs, vr) data set.

Although our special concern in this report is with the standard
program SP (in which all three parameters are determined), we provide
as well for the options 01, 02, and 03 described earlier and addi-

tionally for the possibility of plotting graphs and relevant points
when all three parameters are initially prescribed.

One page of computer printout includes a tabular listing of the
data set (observed striking and residual velocities) along with
some derived quantities which may be of peripheral interest (e.g.,

*One oonjuawuwa -hat a s 8o generated is inherently "better" than the

analagous extraction fPom Sensitivity Analysis, in which there is
sensitivity only to quantal response (yes or no as regards perforation)
and which, provided residual velocities are watched, seems far less
ex, loitative of information.
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A

the "error' at each observed striking velocity between the observed
residual velocity and the residual velocity associated with the determinedfit).

For SP and 02P a second page of printout tabulates "optimal"

values for A and C corresponding to each value for P considered by
the search routine described on page 20; the root mean square error S
associated with each such P is also calculated and printed. In
particular, the "optimal" form (i) fit is determined (recall that
the search routine in question starts from, and hence always examines,
the case P,-2).

In the following pages we offer examples of machine output as generated
by the standard program. These are meant to be more illustrative than
substantive; actual projectile-target situations involved, though
partially and cryptically specified in titles, are of little concern and
we do not elaborate.

Figure 1 provides displays of striking versus residual velocity
(form (2) representations) generated by two different data sets. Figure
2 depicts striking velocity versus residual velocity and striking velocity
versus velocity loss (form (2) and (3) representations respectively)
associated with the same data set. Next is an example of the complete
output (in actual output size) from a single set of input data: tables
Ia and Ib comprise the computer printout; figures 3a, 3b and 3c are
respectively the forms (2), (3) and (4) plotter displays.
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V= o. p.X.C
SP=2.6

•"=.75
•r JC•3087 I/SEC

I P 614 N/SEC

i .00 50.00 100.00 1.0.00 16O.00

X,STRIKING VELOCITY LM/SEC) 1-101 1

1820 GRAM BERRCRT. D= 2-28 CM. L/O= 25 "7.62 CM RH:. 60 ME7.

-T

tUj

Y= (0 9.x~c
w -

U "P [i=6.7
> ?A=.82
j" C=110_ 1 H/SEC

r, H/SEC

00.00 120.00 % .oo Do P.5.00
XiSTRIKING VELOCITY (M/SEC) (viol

Figure 1. Two Examples of Generated v versus v Curves (Form (2)
Representations) S r
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.. , ci -~ ]X-C' )*,0X>C

P=l .9
-J C=276 H/SEC

i$=s16 M/SEC

0 -4

"0.00 q9..a ma .t•s.1o.o0

XISTRIKING VELOCITY (M/SEC) (utOI 0

1..06 GRAM STEEL FRAGMENT SIMULATORS VS .'32 CM TITRAIUM AT 0 DEG.

(-=•XRX I-C 1) 10,X>-C

t .tiR[K•NG VELOCITY
[ [, ~..."YgRES[IDUAL VELOCI[TY

8=-8', - •R t 8
"C=27G "/SEC

, " ~ 60 t.00 t60-.00 21;0.00
L~iX { H/ S E C ) ( , I .O t I

I.

Figure 2. Example of v versus v', Curve (Form (2)) and of Associated5 T$

v versus Curve (Form (3)i s Vs-vr
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2. Input and Program

In Appendix A is found a guide to the input for running the regres-
sion procedure program listed in Appendix B. The program is written in
Fortran language for BRLESC but could be adapted to other computers,
with a few minor changes, i.e., replacements for SORTXY, SCOOP, length of
Hollerith statements and USE (MAIN COMMON). SORTXY (X, Y, N) sorts the
elements of vector X into non-decreasing order and moves the elements of
Y so they correspond to the original values of X. SCOOP is the BRLESC
implementation of the basic Fortran software package described in the
publication 'Programming CALCO14P Pen Plotters" [publication No. 1006A,
California Computer Products, Anaheim, California, 1969]. A word of
caution: XL, the third argument in PLOTS, is the length of paper required
instead of the logical output device number as commonly used. This
program is set up for 30 inch width paper.

Any or all the options and alternatives can be employed by setting
the appropriate flag for each data set. The plots and tabulation will
indicate which parameters, if any, are specified. In addition the first
and third plots can have different scales. The usual procedure is for
SCOOP to determine the initial X and Y values and data units/inch but
this can be bypassed with the flag FIXAX and the alternative values
stipulated.

The program employs 13K memory and a collection of sample problems
averaging fifteen pairs of data points required an average of 19 seconds
of computer time per problem.
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INPUT DATA

Preceding page blank
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WAP00IX A

INPUt DATA

CARD rORxAT CDUI4S PROGRAM NMA UNITS REMARKS

I F1010 1-10 XL inches Maximua amount of plotting prper for
this computer run. (Appro2imately !S
inches per set of 3 plots)

FI0O.0 11-20. PINCg Value used for incrementing parsaeter F.
P,.1 is used in this report

2 ?AI0 1-70 TITLE (I) Title to head tables and graphs Cup to
70 characters)

3 IS 1-5 N kumber of data points. Dimension state-
ments are set up for 97 but can be
"I tezed

15 6-10 IFF Dimenaion flag for (X, Y) data (e/see-0,
ft/nec-])

IS 11-S FIXAX Axis flag for Plot I and Plot 3 (not
specified-0. specified-I)

1$ 16-20 PiT Plots only. where P. A and C are given

IS 21-2$ OPT(1) Flag for porareter P given (yes-1.
no-0)

IS 26-30 OPT(2) Flag for parameter A given (yes~l,
no-0)

IS 31-3S OPT(3) Flag for parameters P and A given (yes-i.
no.0)

is 36-40 OPT(4) Flag for eliminating standard progra'.
(yes-I. no-0)

4 ate. SFIO.0 1-50 X(l). Y(l) ft/soc or (v5 , Vr) data, four pairs to a card. in

r/sec units of m/se: or ft/sec as indicated
by IFF flng

UM FOLLOWING CARDS ARE. DLPENDENT ON ABOVE FLAGS: IF NONE. IGNORE

If FlXAX-I FIO.0 1-10 PLFXI m/sec Minimm X value for Plot I horizontal
axis

1`10.0 11-20 PiWX I alsos Number of data units per inch for Plot I
horizontal axis

FIO.O 21-30 PLDYI M/sec Number of data units per inch for Plot 1
vertical axis which starts at zero

F10.0 31o40 PLOX3 M/s¢€ Number of data units per inch for Plot 3
horizontal axis which starts at zero

FIO.0 41-50 PL/YY3 m/sec Number of data units per inch for Plot 3
vertical axis which starts at zero

If PLT-I FI0.0 1-10 C Wn/sae Parameter of equation

F10.0 11-20 A Parameter of equation

FO.O 21-30 P Parameter of equation

If OPT(1)-1 F10.0 1-10 P Parameter P given t Oe card per option
1-1. 3 requested. For OPT

F10.0 11-20 A Parameter A given (1) P only, oPT (2)
A only, and OPT (3)
both P and A
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APPENDIX B

PROGRAM LISTING

I
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Preceding page blank
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[DIMENSION DS( 100Os, OY(100) , EY(lOGO), OPT(41 v VCfHOO)
COMMON A,, AX(ICO), AY(1003, BO)XI51, BOY(5)9 BOZIS), AX4719 fY(7)o
I CX(103),. CY(100I, FIXAX, r-X(I001, Lt No P, PINCRt PINV, St SYSU.
2 TA13). TBI3), TCt23, T012), TF(21, r013), T~rLE(73, KIIGO)v

3 Y(10Q31, PLFXL, PLOXI, PLFY1* PLDYI# PLFX39 PLDX3P PLFY3, PLOV3,
4PIT, IDUF(100019 XINC2 YINC# TE, C, rOIZI, TH(2)v NCASE
INTEGER ALPb4A#BETA,FIXAXOPT*PLTI' ~ ~DATA (D(3DYIflI,.5)/-1.2v -1.5, -1.8, 9.3. -l.5, 1

I.8, 9*3, 6.5, 6.2, -1.2, 6.5, 6.2, -1.2, -1.5, -L.8/
DATA I~~3~()I17 5.87,p 2.46, 5.76, 2.46, 5.76, 2.25. 5.69
It 2,215, 5.7L, 2.189 5.76, 1.97, 5.87, 1.97/
DATA (TA(I3,I=1,33 IMOIX STRIKING, 10H VELOCITY , lUHIM/SEC)
OATA (railipluIl,31 /LCHYlAX=(I-(C, IOH/X)I X), LGHrCf
DATA (TCU3,l1-112) /1'0HA(X -C 1, I')HlX>C /
CAT,% 4TD(T3,I=1t2) /LOH.4 P , CHI/P /
DATA TE /TH(GIVEN)/
DATA ITF(ZI2tLa,2) /10tlX-A(X -C ), IH ,X>C f
DATA ITGCI),(=1923 IIOHX-Y (N/SEC. I 0H)
DATA (TO1III=1,3) /IOHY RESIDUAL, IOH VFLOCITY v lCH(M/SEC3
DATA (TH(1)91=1,2) /10HPARAMETERS, 1OH GIVEN
READ (5,373 XL,PINCR

C
C XL - TOTAL LENGTH OF PAFER NEEDED FOR GRAPHS
C PINCR - INCREMENT FOR P FOR OPTIOPS 2 AND 4
C

CALL PLOTS (IBUF71000,XL)
CALL PLOT (0,0#-36*O,-31
CALL PLOT (5.O,2.O,-31
X114C=I.5.
YINCZ-9.
FX I L30.
DO L. 1=2.50

1 FXa1)=FL0AT(I-1i*.02
FX(51)-1.0
FX(523=O.O

C ~**** TITLE WdILL HEAD ALL GRAPHS AND TABULATIONS
2 READ (5,351 (TITLE(IhI1ýl,71

WRITE (6,393 (TITLE(I)vI',7)
IHEAOG=O
READ (5,36) N,IFF,FIXAX,PLT,(CPT(III=1,43,(X(J3,Y(J3,J1.*NI

C N -NUMBER OF DATA PAIRS IDIMENISIONING ALLOWS IPAXIMUM OF
C 1FF -DIMENSION FLAG F-R DATA M/SEC=O FT/SEC=L
C FIXAX -FIXED SCALE FORt AXIS 4P1.0o YES=I
C PIT -PLOT WITH GIVEN APvAN0 C YES=I NtJ=O
C OPTII) -P GIVEN YES=I NOýO
C OPT1I21 A GIVEN YES-1 t10=O

C uPT'0) -A AND P G I VEN YESxI NO=0[ P~T(4) ELIMINATE STANDARD PROGRAM YES=1 NO-0
X STRIKING VELOCITY

C -RESIDUAL VELOCITY

IF (FIXAX*GT.OI READ (5,373 PLFX1,PLDXlPLIDYfoPLDX3,PLDY3
C

CPLFXI - STARTING VALUE ON 11CRIZONTAL AXIS PLOTL
CPLDXI. - DATA UNITS PER IMCH HORIZONTAL AXIS PLOTI,
IcPLDYI - DATA UNITS PER INCH VERTICOAL AXIS PLOT3
C PLDYI - DATA UNITS PER INCH VORTICNAL AXIS PLOT3

Preceding page blank
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C PLDY3 -DATA UNITS PER INCH VERTICAL AXIS PLOT3
C

IF kIFFEQ*O) GO TO 4
C **~~CONVERTS FEET TO METERS

00 3 Kml,N
X(K)m.X(K1*~.30418

3 'T(K)aY(Kl*e3043
C *** ARDAANGING DATA IN INCREASING ORDER FOR STRIKING VELOCITIES

4 CALL. SORT.%V IX,&YtN)

SY SQoo
00 5 11.tN

5 SvSQmS'fsQ.( YW I I I
IF (PLToGToOl REAL3 (5#37) CpAP

C C - LIMIT VELOCITY
C A - SLOPE
C P -EXPONENT OF FIT

WRITE (6068) (X(I)9YiI)%I0INl
6 DO 32 L=19.4

IF (PLTaGT.O) GO TO 25
IF ICPT(I*EQDo.AND*L*LT.4I) GO (0 32
IF IL*EQ.4o4ND*OPT(41*EQ.13 GO TO 32
IF IL*EQ*4) GO TO 8
JFKNxO,
JO PT-i

7 IF (OPTIL)*LT@JOPT) GO TO 32
READ (5.37) PvA

C
L. P,A -PRESCRIBED VALUES. NONE TO T14REE DATA CARDS DEPEND-
C ING ON OPTIONS
C

JOPT-JOiPTeI
GO TO 9

8 JFINwl
9 00 10 Iml*N

ALPHA-I
IF (Y(iI)GT*09) GO TO 11

10 CONTINUE
11 IJETA&O

W~ 12 ts1,NfI1
IF (Y(I).EQ*Oq) BETAuI

12 C')NTINUE
C **** INITIAL ESTIMATE OF C

81-0.
02-Do
83w0.
8460.
IF lLoEO.2.O0t.LoE~o43 P.2.
00 13 Ks1,N
IF IYIK).GT*C*) GO TO 14

13 CONTINUE
.14 00 15 I-KtN

XPSX( i*eP
YPUY( II**P
5SwSl*XP*S2
82u82*XP
B3qB3+YP

15 84u54*XP*YP
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B2SQaB2*112
IF fRBI*E0*B?SQl G~O TO 16
U. (R*B4-B2*B3)/ (RB.-82SO3
GO TO 17

16 limO.
17 IF (U*LEO.i GO TO 18

IF IT.LE.O.) GO TO 18
TnT**( I.P)

*G GTO 19
18 TzO.
19 TIvA!NT(Tl

T3CuT-T I
* TaTI

IF (TK*GT..5) TzTI*1.
IF (ALPHA*LEBETA) C;LAMAXItTvO.l
IF (ALPHA.GT*BETA) CZ-AMAX1(TX4BETA)l
Cc-C
WRITE (6,40)
11-0
IF (IHEACG*EC~ll GO TO 34
II4EAOGz1

20 CALL PARAIMETERS
WRITE 16,'.1) P*,AtCtS
IF iL.EQ.2.OR*L.EQ.'t) GO TO 26

21 WRITE (6,42)
C **** SUMMARY TABLE OF DATA FOR PLOTS

AVG-O.
PINV=*/
00 24 I=1,N
IF (X(I).LEoC) GO TO 23
YC41V=A*(X(I3**P-C**P)**PfNV

.2(1 EYM-Y(.-YC( 13
oY I )x(HI -V (I I

AVO-AVOGEY(I)1
GO TO 24

23 YC(13-O9
GO TO 22

24 CONTINUE
AGw AVG/PLO AT(IN)

WRITE t6,43) TITTLE(11,1-1,7),P,APCAVG
WRITE 46,443 (XI I),Y(I ),YC( 1),EY( I ),DY( 13DS(I 3 ,1-,NI
WRITE f6@45)
IF IL*EQ.1I WRITE (6946)
IF lLoEQ*21 WRITE 16,47)
IF (LtEQ.31 WRITE (6,48)
WRITE (6,421

25 CONT INitE
IF (PLT.GT.0) L=O

C ***PLOT * VS Y (STRIKING VELOCITY VS RESIDUAL VELOCITY)
CALL P13Tl

c ** PLOT CIX VERSUS V/AX
CALL PLOT?

c **** PLOT X VS X-Y
CALL PLOT3
IF (PLT.GT*O) GO TG 33
IF (JFINeEQ.03 GO TO 7
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GO TO 32
c *00* OETERN!NATION OF P

26 IF III.Gr.ol GO TO 28

DIR-P (NCR

27 PREVAxA
PREVCimC
PR EVS US
PRE'IP-P

GO TO 20
28 IF IS.LE.PREVS) GO TO 30

IF (PsGE.8oO*QR.P.LE.1.1) GO TO 21
29 MMvo

GO Ti) 27
30 IF (MH.aGT.Ol GO TO 32.

01 Rm-PI:JCR
GO TO 29

31 CxPREVC
APR EVA
PwPREVP
Su PRE VS
GO TO 21

32 CONTINUE
GO TO 2

33 PLTxO
II'EADG'ic
GO TO 6

34 WRITE (6,39) (TITLEI3,JI-II7)

GO TO 20
C

35 FORMAT 17AlO)
36 FORMAT fa15/W81.0.O))
37 FORMAT (BFIO.O)
38 FORMAT (//6XIHXg9X.1HY,9X.liHX.9XIHV,9,;1.HX,9X,IHY,9X,1Hxv9x,1Hyj

Z)
39 FORMAT (IXI7A10)
40 FORMAT (///)
41 FORM4AT ('P=' ,F5.2,3X, Aw ,F6.3p3X. 'Cu' F6.0,3X, '5u',F9.31
42 FORPAT 11141)
43 FORMAT (//,LGX,7A10////15X,2HPuF4.I,5I1. AxF5*2v5H* CutF6.O*lBH

1 M/SECr AVG(Y-YOlrn,F6.O/L5X,49iYuOA(X**P-C**P)**(1iP) IF X>C, You
20 OTHERWISE ///17XslHX,8XLHY,6X,2HY,96X,4HY-Y',5X,311X-Y,6X1 4HX-
3ye)

44 FORMAT I 14X,F6oO,3XpF6.Q,3XF6.0,3X.F6eO,3X,F6.O.3X,F6.C.)
45 FORMAT (///IcXr28HXv AND Y' ARF INI METERSISEC,/I)
46 FORMAT ILOX,IPGIVENO)
41 FORM~AT (LOXt'AG IV ENI
48 FORMAT (LOXPANDAGIVENI)

SUBROUTINE PARAMETERS
COMMON (USE MAIN)
DIMEN~SIIN XP(100), YP(I10

MOO
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C 8*** DETERMINATION OF A
DO 1 KaloN
XPIK)*X1KI**P

I YPtKI*YIKI**P
P INV * I* iP

2 IF (C.LT.O.I GO TO 9
CP~C**P
DO 3 KouhN
IF (XCKI*GE.C) GO TO 4

3 CONTINUE
4 GO.

00 5 1sKN
XPMCPX(XP(I!)-~CP;*$PINV
GmG+Y( Ii*XPMICP

5 H=H+XPMCP**2
GDHtGdIH
IF (L.EQl.OR.LoEO.4) AsAMINIIGDHo1.)
PHI=A*(2,*G-A*HI

C ** DETERMiNATION OF C ANO S
IF (M*GT.O) GO TO 7
mu I
DIR-1.a
MM -O

6 SAVEA-A
SA yE P.PH 1
SAVECSC
SAVEG-G
SAVEH-H
cC=COIR
GO TO 2

7 IF (PHI.GE.SAVEP) GO TO 8
IF (MM.GT.OI GO TO 9
01 R--I.

8 Mm-I
GO TO 6

9 ANSAVEA
C-S AVEC
PS'I~ABS( SYS(Q-A*( 2.*SAVE-G-A*SAVE-H) I
$ 5CR I IPS 1/FLOAT(N) I
RE TURN

C END

C
C

CUBOUTIN(UE MAOIN
CUMMOUTIUSE MLAIN

PINV-1./P
IF IFIXAX.GT.0) GO TO 16
I'F (C.LT.X(I)) GO TO 13

C ASSURES Y AXIS STARTS AT ZERO

CALL SCALE ('Y*5sOvNill
YI NI~YIN+I)
YI N+I I-V(N+2)
N*N-I
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k IF (JJ.EQ.13 GO TO 14
2AAwC-XIN4Z)
IF (AAeLT*X(N+11) GO TO 15

C *** PLOT TITLESsAXES9 AND PARAMETERS
3 CALL AXIS (0.O,0.OoTA,-3O,8.O9,OC,XINI).X(N+2Z1

CALL AXIS (0OtOO.OT093095.,000.09 YIN+ L) ,Y(N4ZI I
IF (FIXAXoGT*G) GO TO 18
"C.LL LINE (XtYtNolt-i,1I

4 CALL SYMBOL (-.5v5.5v.14#TITLE*09O,70)
CALL SYMBOL (6.'.6,2.32*.0795H< <00'.3051
CALL SYMBOL (5*9jZ*25 ,*14vBtlOp a x cto.0ga)
CALL SYMBOL (6o46.2.25o.O7t5f4= sClo.005[CALL SYMBOL (5*3492mi~g.14#2IlY=,OO,02)4
CALL SYMBOL (6.32,2.145,.07,TQ,G0.,2O)
CALL SYMBOL (5.9,2.04.. L4oT1C,COv20)
CALL SYMBOL (5*34,la59..14t214P=,.O.02)

CALL NUMBER (5,62v1.5q,.t4,PtC*UI3

IF (LoEQ.2.ORod..EQ*31 CALL SYMBCL (6.32#1&3B..14vTEtO9Ot?)
CALL SYMBOL (5.34,1.3?,.14,2HC=-,O.0,2)
CALL NUM~BER (5.62d 61*38.14q,CC.3,-1

CALL SYM.doL (6932,j.17,9l4w5HM/SECO*0.5I
IF (PLT.EO.O) CALL SYMBOL (5.34,.66,o14,2HS*,vOeO,21
IF IPLT.EQ*O) CALL NUMBER (5.62,v66,.14,S,O.O,-1)
IF IPLT.EO.O) CALL SYMBOL (6*32,*669*14,5IIMISECtOoOt51
IF (PL.T.GT.Ol CALL SYMBOL (5.34,.66,..4,THr0*e,20I

C *** PLOT BRACKETS
CX ( I X( N*1)
CX (9 );XI N+2
CY (3V.Y(N+l]
CY(9)=YIN+2)
DO 5 IzIP7
CXlf)cSx(13*CX(91+CX(s)

5 CYII)aaY( I)*CY(9)+CY18)
CALL LINL (CXrCYt7tlvOvl)

C. *** PLOT CURVE
XMAXr-X(N4I)+a.*X(N+2 I
YMAX Y(N+I)e5**Y(N+2)
NNa 2
AXI 1)-XfN41)
AY(11-0.,J
AK (23=
AY (2120.O
DR21Y(N+11+5.O*YIN,2fl/48.
IF (AX(Z)*LTsAX(L2) GO TO L7

6 DO 7 1=3o5O
AY(')-AY(1-1)+OR
IF iAY(13.GE.YMAX) GO TO 8L. AX(II)-(AYII)/A)**p#C**P)**PINV
li !AXHi,.GL*XMAX) GO TOa
NN=I

7 CONTINUE
8 Ak INfiJ4I I X IN+l I
AXINNG2I.XINt2)
AY(NN+13 .YIN4iI
AYINN.23'Y(N+Zl
CALL LINE fAXrAYNNtlvOtO)

C,*4 PLOT ASYMPTOTE
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AXE1)=XEN4:13
AYIl)AY(N+l)
DRR(XMAX-XIN41) 3/49.
DO 9 1-2,50
AX(l)-AXiU-I)+OR
IF (AXII)*GE*XMAX) GO TO 10
AYE! DuAX(Il*A
IF (AY(!J.GE.YMAX) GO TO 10

9 NNaI
L0 DO 11 Imu1.NN

* ~AXE! 3-tAXI iI-XEN+L) )/XlN+2)-.C7

11 CALL SYMBOL (AXEI),AYfII,.I4tIH.,O.OiI)
C *** PLOT BORDERS

CX(6I=X(N.1I
CX17=X(N*2)
CY46)=Y(Nfl)
CYE73=YIN+21
00 12 !1,1.5
CXI 13=BDX('I)*CX(?3+CX161

12 CY(I)=BOY(I)*CY(7)+CY16)
CALL LINE (CXpCY#5,I.,O,13
CALL PLOT EO.,YINCt-3)
WRITE 46,20)
RE-TURN

13 SAVE1=X(IJ
SAVE2zY(li

XE 1)-C

GO TO 1
14 X(1)=SAVEI

VI1)=SAVE2
GO TO 2

C ASSURES SPACE ON PLOT BETWEEN XMIN ANO X-C
15 X(N+1)=AA

YtN+1)'=O.
N- N41
IF (X(N).LEeO*) X(N3-09
CALL SCALE (X#B.OptJtl)
CALL SCALE IYY,59,NP1)
X(N)-X(N+1)
Vt N) -YE N ~ 1
X(N+IL)XEN+21
YlN.1)wYfN+2J
N' N-1
GO TO 3

16 X(N,6 )zPLFXI
XEN4+Z3;PLUXI
YE N+1 30.

* YEN+2hýPLoy1
GO TO 3I

17 AYE2;xA*(AXI 1)**P-C**P)**PINV
AX(Z)=AX(E 1

SGO TO 6

00 19 Jnl,.N
IF (X(J)*LToPLFX13 GO TO 19
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AV (K) mV(J I
19 CONTINUE

AX (Kt2)mX (N .2)
AV (K+I)aY(N~li
AY (K+2) aY(N.2)
CALL LINE (AXAY#Kit,-191)
GO TO 4

C.
20 FORMAT 112H PLOT I DONE)

END
C
C
C.

SUBROUTINE PLOT2
COMMON (uSE MAIN)
DIMENSION DLM3
CALTA (DL(11.*1,133 /10H ----------- v o" ----------- IO -

C *** PLOT TITLES,AXES, AND PARAMETERS
CALL AXIS (C.OO.C,3I4C/Xp-3,4.OG.~O.O.O,25)
CALL AXIS fO.0,O.Os4HY/AX*4,4.0,90.O9.0.O.25)
CALL SYMBOL (-.O6,3e93,s14,DL,O,O,30)
CALL SYMBOL (4*07*-*06*e14tDL,90*O930)
CALL SYMs3OL I-,5,4.5,*14,TITLE,O.0,TO)
CALL SYM4BOL f6*355,3*605,.07,1iP 1/P9O.O.71
CALL SYMBIL C4,5,3&5,.14,T13,O*0,221
CALL SYMB3OL (4*5,2.7#*149TA.O*O,19l
CALL SYMU~OL (4*5#2*4,e14,pTO#O*O,19l
CALL SYMBOL (4*5,1.9,.1I4v2HPm,u.0.v2)
CALL NUMBER 14*78,1*9,.14,P,0sO,1)
IF (L*EQjL.CJRoL*EQ.3) CALL SYMBOL (5e48v1e9v*L4eTE,O*O.#T)
CALL SYMBOL (#e.5v1.6..14,2HAzs,0*2)
CALL NUMBER (4*78v1*6i*I4,AvO.O,2)
If (L.EP.2.OR*L.E~o3) CALL SYMBOL (5*48,1w6v*14vTE*O9O,7I
CALL SYMBOL (4.5,1.3,.1492HCv,.O.O,2)
CALL N4UMBER (4.7B,1.3,.14,C,0OvO-1)
CALL SYMBOL I594891*3v*14*5HM1SEC*O.O.51
IF IPLT.GTO) CALL SYMBOL 44.5Dv.79,.14,Tt4,O.O,20i

C. *** PLOT CURVE

0O 1 1*2,50
1 AX(I)=(1.-FX(I )**P)bbPINV

AX(5 1) uOsO
AX (52) uO .0
AX (53 ) u*25
CALL LINE (FXvAX,51v1,O,O)

-jc *** PLOT CATA
JutO
00 2 Iu.0
IF (X(I)*LT.C) GO TO 2
j-J+I
CXIJh-C/XtI) I)
CYW-YJIVI)/(A*ýXfI

2 CONTINUC
CX(J+l)-O.O
CX(J*21*.25
CY (J+I1uO.O
CY(J+21=.25
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CALL LINE ICX,CYJtlo-ltll
C *** PLOT BORDERS

Cx(blxO,0
CX (7)a. 25
CY(A)aO.O
CV (73=. 25
DO 3 1.1,5
CXl1V=BOXl13*CX(7).CX(Eil

3 CY( I)sB0I(-I3'CYi7)+CY(6I
CALL LINE (CXtCY*5#1,O,11
CALL PLOT (O.,Y!NC,-31
WRITE (6.43

* RE-TURN
C

4 FORMAT 912H PLOT 2 DONE)
END

C

C
SUBROUTINE P1013
COMMON (USE MAIN)
DIMENSION DY(1OOI
DO I 1=LwN

I OY(1[=X(I)-YUI)
IF (FIXAX.GT60) GO TO 10
X(N+2)QC
BY 1N+-2) MC
X(N*1 3=0.
DY (0N11 I) =0.
NwN*2
CALL SCALE IX#6.O.Nt1)
CALL SCALP (OYo4oONvl3

XI Nl=XVN+ 2)
DY (N- 11 -0-Y I N+ 1)
DY INI =DY CNeZ
N%%N-2

C *** PLOT TITLES,AXES. AND P. IAMETERS
2 CALL AXIS (O.O,,,.0.,9HX (M/SEC),-9,6.OO.OX(N+l),X(N+2))
CALL AXIS (0.O,0.0,TG,11,4.:-,90.,0OYI(J.13DY(N.2I3
CALL SYMBOL f-.5, 5.5v. 14,TITLEv^.0*.O,7
CALL SYMBOL flo98v4.72,*I4,4HX-Y~q0*0,43
CALL SYMBOL !2.82v4*79t*L4v8HX, 0 X CO.O,81
CALL SYMB*)L (3.41*4.B69.07t5H< <,0.0#5)
CALL SYMBOL l3o41,4.79,.07,5H= =,C.O,53
CALL SYMBOL (3&59v4.6fl5q.07,TDvL*09?C3
CALL SYMBOL (2.82,4.,58,. 14, rFU.O,20)
CALL SYMBOL (5. 52, 3.0,.14,TA,0o., 191
CALL SYMBOL (5.52,2.8, *14,TCO*u,193
CALL SYMBOL 46*5#2.3,.14,2HP=,O.0921
CALL NUM6ER (6o7892.3,9140PO.OI3

lF !L&EQl.i.)RL.EQv3) CALL SYMSBJL i'.46,2.3v.14v!E,0&0v71
CALL SYMBOL (6o5,2.O*.l4?2HA=vC.O,2I

* CALL SYMBOL (6*59l.7,*I4p2HC-v.O~s2I
CALL NUMBER (6e78,1.7,.14,CvOsG,-L)
CALL SYMBOL (7*34v,.7,*I4,6HM/SEC .0.0,6)
IF (PLT.GT.O) CALL SYMBOL l6*5.1.19twl49TH.O*O,20)

C * PLOT BRACKETS
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CXf8lmX(N.1)
CX(9 )uXI N#21

CY49)uDY(N*21
00 3 Isl97
CXfIIlsa(X( I)-3*O8)*CXP)),CX(6l

3 Cf'II3-(8Y(I)+2.54)*C.Yl9)+CY(8i
CALL LINE ICXCY*7,1.Oo1I

C *** PLOT CURVE
NNm2
GX IL I .0

CX(2)-C
CV (2)-C
R#4AX%4.*t3V(N+2)
ZHAX=6.*XIN+21
OZw(ZhAX-CX(2) 1/48.
PINV=1./P
'0 4 1.3p50
CXI I )uCXI I-I+n.l
IF ICX(IloJGT.LI4AX) GO TO 5
CY(Ij=CXI I)-A*(CX(I IO*P-C**PI**PINV
IF (CY(I).GT.RMAX) GO TO 5
NNu I

4 CONTINUE
5 CXINN4I)aX(N4I.)

CX INN4Z) =X IN*2
CV INN. I.) nOV N~ 1
CY(NN+21&O'v(N+21
CALL LINE (CXPCY,NN.,tOO)

C 00* PLOT ASYMPTOTE
Du(1.-A)*7)4AX
IF DO.GTaRMAX) GO TO 1.1

6 ZnZMAX/FLOATINN-L)
CX(I)-Oo
CYII)wO.
DO 7 IsZNN

7 CY(Il-lL.-A)*CX(I)
00 8 ImINN
CXI I -ICX( I)-X(N+l) )/XINi21-.O7
CVI I IICYI I -OYIN4 I.)I/DY(NG2)-.Ci3S
CALL SYMBOL (CX(I3,CYIII,.14.114.,O*O,1)

8 CONTINUE
C *** PLOT (JATA'

CALL LINE (X*OYtN,1.-II)
C 4** PLOT BORDERS

CX (6 JXI N. I.)
CX17)aEIN#2)
CY16)'Y(N+IaLCY(7)=Y(N#2)
CX(II 3BDX(I:)*CXI7)+CX(6)

9 CY(IlaBOY(I)*CYII'CY161
CALL LINE (CXPCY,591,091j
YORKGm-Z. *VINC
CALL PLOT (XINCoYORIGt-3$
WRITE l6sM2
WRITE (6913)
RETURN



RETURN
10 XtN*11aO.

Xt N4Z )APLOX3
DVtNIN1)nOe
DY (N42)-PLDY3
GO TO 2

11 ZMA~uRMAX/(1.-A)

12 FORMAT 112H PLOT 3 DONE)
13 FORMAT IIHI)

- END

<<


